Monge’s Transport Problem in the Heisenberg Group

نویسنده

  • L. DE PASCALE
چکیده

We prove the existence of solutions to Monge’s transport problem between two compactly supported Borel probability measures in the Heisenberg group equipped with its Carnot-Carathéodory distance assuming that the initial measure is absolutely continuous with respect to the Haar measure of the group.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

B-FOCAL CURVES OF BIHARMONIC B-GENERAL HELICES IN Heis

In this paper, we study B-focal curves of biharmonic B -general helices according to Bishop frame in the Heisenberg group Heis   Finally, we characterize the B-focal curves of biharmonic B- general helices in terms of Bishop frame in the Heisenberg group Heis        

متن کامل

Translation invariant surfaces in the 3-dimensional Heisenberg‎ ‎group

‎In this paper‎, ‎we study translation invariant surfaces in the‎ ‎3-dimensional Heisenberg group $rm Nil_3$‎. ‎In particular‎, ‎we‎ ‎completely classify translation invariant surfaces in $rm Nil_3$‎ ‎whose position vector $x$ satisfies the equation $Delta x = Ax$‎, ‎where $Delta$ is the Laplacian operator of the surface and $A$‎ ‎is a $3 times 3$-real matrix‎.

متن کامل

Existence and uniqueness of optimal maps on Alexandrov spaces

The purpose of this paper is to show that in a finite dimensional metric space with Alexandrov’s curvature bounded below, Monge’s transport problem for the quadratic cost admits a unique solution.

متن کامل

Monge's Optimal Transport Distance with Applications for Nearest Neighbour Image Classification

This paper focuses on a similarity measure, known as the Wasserstein distance, with which to compare images. The Wasserstein distance results from a partial differential equation (PDE) formulation of Monge’s optimal transport problem. We present an efficient numerical solution method for solving Monge’s problem. To demonstrate the measure’s discriminatory power when comparing images, we use it ...

متن کامل

Augmented Lagrangian Methods for Transport Optimization, Mean-field Games and Degenerate Pdes

Many problems from mass transport can be reformulated as variational problems under a prescribed divergence constraint (static problems) or subject to a time dependent continuity equation which again is a divergence constraint but in time and space. A large class of Mean-Field Games introduced by Lasry and Lions may also be interpreted as a generalisation of the time-dependent optimal transport...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010